Как построить атомную электростанцию. АЭС: принцип работы и устройство. История создания АЭС. Откуда и как управляют атомной электростанцией
Атомная электростанция – предприятие, представляющее собой совокупность оборудования и сооружений для выработки электрической энергии. Специфика данной установки заключается в способе получения тепла. Необходимая для выработки электроэнергии температура возникает в процесса распада атомов.
Роль топлива для АЭС выполняет чаще всего уран с массовым числом 235 (235U). Именно потому, что этот радиоактивный элемент способен поддерживать цепную ядерную реакцию, он используется на атомных электрических станциях, а также применяется в ядерном оружии.
Страны с наибольшим количеством АЭС
На сегодняшний день в 31 стране мира функционируют 192 атомные электростанции, использующие 451 энергетический ядерный реактор общей мощностью 394 ГВт . Подавляющее большинство АЭС находится в странах Европы, Северной Америки, Дальневосточной Азии и на территории бывшего СССР, в то время как в Африке их почти нет, а в Австралии и Океании их нет вообще. Еще 41 реактор не производил электричества от 1,5 до 20 лет, причём 40 из них находятся в Японии .
За последние 10 лет в мире в эксплуатацию было введено 47 энергоблоков, почти все из них находятся либо в Азии (26 - в Китае), либо в Восточной Европе. Две трети строящихся на данный момент реакторов приходятся на Китай , Индию и Россию . КНР осуществляет самую масштабную программу строительства новых АЭС, ещё около полутора десятка стран мира строят АЭС или развивают проекты их строительства.
Помимо США, к списку наиболее продвинутых в области ядерной энергетики стран относят:
- Францию;
- Японию;
- Россию;
- Южную Корею.
В 2007 году Россия приступила к строительству первой в мире плавучей АЭС , позволяющей решить проблему нехватки энергии в отдалённых прибрежных районах страны . Строительство столкнулось с задержками. По разным оценкам, первая плавающая АЭС заработает в 2019-2019 годах.
Несколько стран, включая США, Японию, Южную Корею, Россию, Аргентину, ведут разработки мини-АЭС с мощностью порядка 10-20 МВт для целей тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов. Предполагается, что малогабаритные реакторы (см., например, Hyperion АЭС) могут создаваться с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества . Строительство одного малогабаритного реактора CAREM25 ведётся в Аргентине. Первый опыт использования мини-АЭС получил СССР (Билибинская АЭС).
Принцип работы АЭС
Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.
Существуют различные виды ядерных реакторов:
- PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
- ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
- GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.
По принципу устройства реакторы также делят на:
- PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
- BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
- РБМК (канальный реактор, имеющий особенно большую мощность);
- БН (система работает за счет быстрого обмена нейтронами).
Устройство и структура атомной электростанции. Как работает АЭС?
Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:
- реактора;
- бассейна (именно в нем хранят ядерное топливо);
- машины, перегружающие топливо;
- БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).
За данным корпусом следует зал. В нем обустроены парогенераторы и находится основная турбина. Сразу же за ними располагаются конденсаторы, а также линии передачи электричества, выходящие за границы территории.
Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.
Принцип работы АЭС
На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:
- ядерная с переходом в тепловую;
- тепловая, переходящая в механическую;
- механическая, преобразовывающаяся в электрическую.
Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C ). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).
И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.
Защитные механизмы АЭС
Все атомные электростанции в обязательном порядке оснащаются комплексными системами безопасности, например:
- локализующие – ограничивают распространение вредоносных веществ в случае аварии, повлекшей выброс радиации;
- обеспечивающие – подают определённое количество энергии для стабильной работы систем;
- управляющие – служат для того, чтобы все защитные системы функционировали нормально.
Кроме того, реактор может аварийно остановиться в случае чрезвычайной ситуации. В этом случае автоматическая защита прервет цепные реакции, если температура в реакторе продолжит подниматься. Эта мера впоследствии потребует серьезных восстановительных работ для возвращения реактора в строй.
После того как в Чернобыльской АЭС произошла опасная авария , причиной которой оказалось несовершенство конструкции реактора, стали больше внимания уделять защитным мерам, а также провели конструкторские работы для обеспечения большей надежности реакторов.
Катастрофа ХХІ века и её последствия
В марте 2011 года северо-восток Японии поразило землетрясение, вызвавшее цунами, которая в итоге повредила 4 из 6 реакторов АЭС «Фукусима-1».
Менее чем через два года после трагедии официальное количество погибших в катастрофе превышало 1500 человек, в то время как 20 000 человек до сих пор считаются пропавшими без вести, а еще 300 000 жителей были вынуждены оставить свои дома.
Были и пострадавшие, которые оказались не способны покинуть место происшествия из-за огромной дозы излучения. Для них была организована незамедлительная эвакуация, продолжавшаяся 2 дня.
Тем не менее, с каждым годом методы предотвращения аварий на АЭС, а также нейтрализации ЧП совершенствуются – наука неуклонно идёт вперёд. Тем не менее, будущее явно станет временем расцвета альтернативных способов получения электроэнергии — в частности, логично ожидать появления в ближайшие 10 лет орбитальных солнечных батарей гигантского размера, что вполне достижимо в условиях невесомости, а также прочих, в том числе революционных технологий в энергетике.
Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Принцип работы атомной электростанции и электростанций, сжигающих обычное топливо (уголь, газ, мазут, торф)одинаков: за счет выделяющегося тепла вода преобразуется в пар, который под давлением подается на турбину и вращает ее. Турбина, в свою очередь, передает вращение на генератор электрического тока, который преобразует механическую энергию вращения в электрическую энергию, то есть генерирует ток. В случае тепловых электростанций преобразование воды в пар происходит за счет энергии сгорания угля, газа и т. п., в случае АЭС - за счет энергии деления ядра урана-235.
Для преобразования энергии деления ядра в энергию водяного пара используются установки различных типов, которые получили название ядерных энергетических реакторов (установок). Уран обычно используется в виде диоксида - U0 2 .
Оксид урана в составе специальных конструкций помещают в замедлитель - вещество, при взаимодействии с которым нейтроны быстро теряют энергию (замедляются). Для этих целей используется вода или графит - соответственно этому реакторы называют водными или графитовыми.
Для переноса энергии (другим словом - тепла) от активной зоны к турбине используют теплоноситель - воду, жидкий металл (например, натрий) или газ (например, воздух или гелий). Теплоноситель омывает снаружи разогретые герметичные конструкции, внутри которых происходит реакция деления. В результате этого теплоноситель нагревается и, перемещаясь по специальным трубам, переносит энергию (в виде собственного тепла). Нагретый теплоноситель используется для создания пара, который под высоким давлением подается на турбину.
Рис.Ж.1. Принципиальная схема АЭС: 1 – ядерный реактор, 2 – циркуляционный насос, 3 – теплообменник, 4 – турбина, 5 – генератор электрического тока
В случае газового теплоносителя эта стадия отсутствует, и на турбину подается непосредственно нагретый газ.
В российской (в советской) атомной энергетике получили распространение два типа реакторов: так называемые Реактор Большой Мощности Канальный (РБМК) и Водо-Водяной Энергетический Реактор (ВВЭР). На примере РБКМ рассмотрим принцип работы АЭС чуть более подробно.
РБМК
РБМК является источником электроэнергии мощностью 1000 МВт, что отражает запись РБМК-1000. Реактор размещается в железобетонной шахте на специальной опорной конструкции. Вокруг него, сверху и снизу расположена биологическая защита (защита от ионизирующего излучения). Активную зону реактора заполняет графитовая кладка (то есть определенным образом сложенные блоки графита размером 25x25x50 см) цилиндрической формы. По всей высоте сделаны вертикальные отверстия (рис. Ж.2.). В них помещают металлические трубы, называемые каналами (отсюда название «канальный»). В каналы устанавливают либо конструкции с топливом (ТВЭЛ - тепловыделяющий элемент), либо стержни для управления реактором. Первые называются топливными каналами, вторые - каналами управления и защиты. Каждый канал является самостоятельной герметичной конструкцией.Управление реактором осуществляется погружением в канал стержней, поглощающих нейтроны (для этой цели используются такие материалы, как кадмий, бор, европий). Чем глубже такой стержень входит в активную зону, тем больше нейтронов поглощается, следовательно, число делящихся ядер уменьшается, энерговыделение падает. Совокупность соответствующих механизмов называется системой управления и защиты (СУЗ).
Рис.Ж.2. Схема РБМК.
К каждому топливному каналу снизу подводится вода, которая подается в реактор специальным мощным насосом, - он называется главный циркуляционный насос (ГЦН). Омывая ТВС, вода вскипает, и на выходе из канала образуется пароводяная смесь. Она поступает в барабан-сепаратор (БС) - аппарат, позволяющий отделить (сепарировать) сухой пар от воды. Отделенная вода направляется главным циркуляционным насосом обратно в реактор, замыкая тем самым контур «реактор - барабан-сепаратор - ГНЦ - реактор». Он называется контуром многократной принудительной циркуляции (КМПЦ). Таких контуров в РБМК два.
Количество оксида урана, необходимого для работы РБМК, составляет около 200 тонн (при их использовании выделяется такая же энергия, как при сжигании порядка 5 миллионов тонн угля). Топливо «работает» в реакторе 3-5 лет.
Теплоноситель находится в замкнутом контуре, изолированном от внешней среды, исключая сколь-либо значимое радиационное загрязнение. Это подтверждается исследованиями радиационной обстановки вокруг АЭС как самими службами станций, так и контролирующими органами, экологами, международными организациями
Охлаждающая вода поступает из водоема около станции. При этом забираемая вода имеет естественную температуру, а поступающая обратно в водоем - примерно на 10°С выше. Существуют строгие нормативы по температуре нагрева, которые дополнительно ужесточаются с учетом местных экосистем, но так называемое «тепловое загрязнение» водоема является, вероятно, самым значимым экологическим ущербом от атомных электростанций. Этот недостаток не является принципиальным и непреодолимым. Чтобы избежать его, наряду с водоемами-охладителями (или вместо них) используются градирни. Они представляют собой огромные сооружения в виде конических труб большого диаметра. Охлаждающая вода, после нагрева в конденсаторе, подается в многочисленные трубки, расположенные внутри градирни. Эти трубки имеют небольшие отверстия, через которые вода вытекает, образуя внутри градирни «гигантский душ». Падающая вода охлаждается за счет атмосферного воздуха и собирается под градирней в бассейне, откуда забирается для охлаждения конденсатора. Над градирней в результате испарения воды образуется белое облако.
Радиоактивные выбросы АЭС на 1-2 порядка ниже предельно допустимых (то есть приемлемо безопасных) значений, а концентрация радионуклидов в районах расположения АЭС в миллионы раз меньше ПДК и в десятки тысяч раз меньше природного уровня радиоактивности.
Радионуклиды, поступающие в ОС при работе АЭС, представляют собой в основном продукты деления. Основную часть из них составляют инертные радиоактивные газы (ИРГ), которые имеют малые периоды полураспада и потому не оказывают ощутимого воздействия на окружающую среду (они распадаются раньше, чем успевают воздействовать). Кроме продуктов деления некоторую часть выбросов составляют продукты активации (радионуклиды, образовавшиеся из стабильных атомов под действием нейтронов). Значимыми с точки зрения радиационного воздействия являются долгоживущие радионуклиды (ДЖН, основные дозообразующие радионуклиды - цезий-137, стронций-90, хром-51, марганец-54, кобальт-60) и радиоизотопы йода (в основном йод-131). При этом их доля в выбросах АЭС крайне незначительна и составляет тысячные доли процента.
По итогам 1999 года выбросы радионуклидов на АЭС по инертным радиоактивным газам не превышали 2,8% допустимых значений для уран-графитовых реакторов и 0,3% - для ВВЭР и БН. По долгоживущим радионуклидам выбросы не превышали 1,5% допустимых выбросов для уран-графитовых реакторов и 0,3% - для ВВЭР и БН, по йоду-131, соответственно, 1,6% и 0,4%.
Важным аргументом в пользу ядерной энергетики является компактность топлива. Округленные оценки таковы: из 1 кг дров можно произвести 1 кВт-ч электроэнергии, из 1 кг угля - 3 кВт-ч, из 1 кг нефти - 4 кВт-ч, из 1 кг ядерного топлива (низкообогащенного урана) -300 000 кВт-ч.
Атомный энергоблок мощностью 1 ГВт потребляет примерно 30 тонн низкообогащенного урана в год (то есть примерно один вагон в год). Для обеспечения года работы такой же по мощности угольной электростанции необходимо около 3 миллионов тонн угля (то есть около пяти железнодорожных составов в день ).
Выбросы долгоживущих радионуклидов угольной или мазутной электростанций в среднем в 20-50 (а по некоторым оценкам в 100) раз выше, чем АЭС такой же мощности.
Уголь идругие ископаемые виды топлива содержат калий-40, уран-238, торий-232, удельная активность каждого из которых составляет от нескольких единиц до нескольких сотен Бк/кг (и, соответственно, такие члены их радиоактивных рядов, как радий-226, радий-228, свинец-210, полоний-210, радон-222 и другие радионуклиды). Изолированные от биосферы в толще земной породы, при сжигании угля, нефти и газа они освобождаются и выбрасываются в атмосферу. Причем это в основном наиболее опасные с точки зрения внутреннего облучения альфа-активные нуклиды. И хоть природная радиоактивность угля, как правило, относительно невысока, количество сжигаемого топлива на единицу произведенной энергии колоссально.
В результате дозы облучения населения, проживающего вблизи угольной электростанции (при степени очистки дымовых выбросов на уровне 98-99%) больше , чем дозы облучения населения вблизи АЭС в 3-5 раз .
Кроме выбросов в атмосферу необходимо учитывать, что в местах концентрирования отходов угольных станций наблюдается значительное повышение радиационного фона, которое может приводить к дозам, превышающим, предельно допустимые. Часть естественной активности угля концентрируется в золе, которая на электростанциях накапливается в огромных количествах. При этом в пробах золы Канско-Ачинского месторождения отмечаются уровни более 400 Бк/кг. Радиоактивность летучей золы донбасского каменного угля превышает 1000 Бк/кг. И эти отходы никак не изолированы от окружающей среды. Производство ГВт-года электроэнергии за счет сжигания угля приводит к попаданию в окружающую среду сотен ГБк активности (в основном альфа).
Такие понятия, как «радиационное качество нефти и газа», стали привлекать серьезное внимание сравнительно недавно, тогда как содержание природных радионуклидов в них (радия, тория и других) могут достигать значительных величин. Например, объемная активность радона-222 в природном газе в среднем от 300 до 20 000 Бк/м 3 при максимальных значениях до 30 000-50 000. И таких кубометров Россия добывает в год почти 600 миллиардов.
Следует все же отметить, что радиоактивные выбросы как АЭС, так и ТЭС, не приводят к заметным последствиям для здоровья населения. Даже для угольных станций - это третьестепенный экологический фактор, который по значимости существенно ниже других: химических и аэрозольных выбросов, отходов и проч.
ПРИЛОЖЕНИЕ З
Все очень просто. В ядерном реакторе распадается Уран-235, при этом выделяется огромное количество тепловой энергии, она кипятит воду, пар под давлением крутит турбину, которая вращает электрогенератор, который вырабатывает электричество.
Науке известен по крайней мере один ядерный реактор естественного происхождения . Он находится в урановом месторождении Окло, в Габоне. Правда, он уже остыл полтора миллиарда лет назад.
Уран-235 - это один из изотопов урана. Он отличается от простого урана тем, что в его ядре не хватает 3 нейтронов, из-за чего ядро становится менее стабильным и распадается на две части, когда в него на большой скорости врезается нейтрон. При этом вылетает еще 2–3 нейтрона, которые могут попасть в другое ядро Урана-235 и расщепить его. И так по цепочке. Это называется ядерной реакцией.
Управляемая реакция
Если не управлять цепной ядерной реакцией и она пойдет слишком быстро, то получится самый настоящий ядерный взрыв. Поэтому за процессом надо тщательно следить и не давать распадаться урану слишком быстро. Для этого ядерное топливо в металлических трубках помещают в замедлитель - вещество, которое замедляет нейтроны и переводит их кинетическую энергию в тепловую.
Для управления скоростью реакции в замедлитель погружают стержни из поглощающего нейтроны материала. Когда эти стержни поднимают, они улавливают меньше нейтронов и реакция ускоряется. Если стержни опустить, то реакция опять замедлится.
Дело техники
Огромные трубы в атомных электростанциях на самом деле никакие не трубы, а градирни - башни для быстрого охлаждения пара.
В момент распада ядро раскалывается на две части, которые разлетаются с бешеной скоростью. Но далеко они не улетают - ударяются о соседние атомы, и кинетическая энергия превращается в тепловую.
Дальше этим теплом нагревают воду, превращая ее в пар, пар крутит турбину, а турбина крутит генератор, который и вырабатывает электричество, точно так же, как в обычной тепловой электростанции, работающей на угле.
Смешно, но вся эта ядерная физика, изотопы урана, цепные ядерные реакции - все для того, чтобы вскипятить воду.
За чистоту
Атомная энергия используется не только в атомных электростанциях. Существуют корабли и подводные лодки, работающие на ядерной энергии. В 50 годы даже разрабатывались атомные автомобили, самолеты и поезда.
В результате работы ядерного реактора образуются радиоактивные отходы. Часть из них можно переработать для дальнейшего использования, часть приходится держать в специальных хранилищах, чтобы они не причинили вред человеку и окружающей среде.
Несмотря на это ядерная энергия сейчас является одним из самых экологически чистых. Атомные электростанции не производят выбросов в атмосферу, требуют очень мало топлива, занимают мало места и при правильном использовании очень безопасны.
Но после аварии на Чернобыльской АЭС многие страны приостановили развитие атомной энергетики. Хотя, например, во Франции почти 80 процентов энергии вырабатывается атомными электростанциями.
В двухтысячных из-за большой цены на нефть все вспомнили о ядерной энергии. Существуют разработки по компактным ядерным электростанциям , которые безопасны, могут работать десятилетими и не требуют обслуживания.
10,7% всемирной генерации электричества ежегодно вырабатывают атомные электростанции. Наряду с ТЭС и ГЭС они трудятся над обеспечением человечества светом и теплом, позволяют пользоваться электроприборами и делают наши жизнь удобнее и проще. Так уж вышло, что сегодня слова «атомная станция» ассоциируются с мировыми катастрофами и взрывами. Простые обыватели не имеют ни малейшего понятия о работе АЭС и ее строении, но даже самые непросвещенные наслышаны и напуганы происшествиями в Чернобыле и Фукусиме.
Что такое АЭС? Как они работают? Насколько опасны атомные станции? Не верьте слухам и мифам, давайте разбираться!
Что такое АЭС?
16 июля 1945 года на военном полигоне в США впервые извлекли энергию из ядра урана. Мощнейший взрыв атомной бомбы, принесший огромное количество человеческих жертв, стал прототипом современного и абсолютно мирного источника электроэнергии.
Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США. Для проверки работоспособности генератор подключили к 4м лампам накаливания, неожиданно для всех лампы зажглись. С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.
Первая в мире атомная станция была запущена в Обнинске в СССР в 1954 году. Ее мощность составляла всего 5 мегаватт.
Что такое АЭС? АЭС это ядерная установка, которая производит энергию с помощью ядерного реактора. Ядерный реактор работает на ядерном топливе, чаще всего уране.
В основе принципа работы ядерной установки лежит реакция деления нейтронов урана , которые сталкиваясь друг с другом, делятся на новые нейтроны, которые, в свою очередь, тоже сталкиваются и тоже делятся. Такая реакция называется цепной, она и лежит в основе ядерной электроэнергетики. При всем этом процессе выделяется тепло, которое нагревает воду до ужасно горячего состояния (320 градусов по Цельсию). Потом вода превращается в пар, пар вращает турбину, она приводит в действие электрогенератор, который и вырабатывает электроэнергию.
Строительство АЭС сегодня ведется большими темпами. Основная причина роста количества АЭС в мире – это ограниченность запасов органического топлива, попросту говоря, запасы газа и нефти иссякают, они необходимы для промышленных и коммунальных нужд, а урана и плутония, выступающих топливом для атомных станций, нужно мало, его запасов пока вполне хватает.
Что такое АЭС? Это не только электричество и тепло. Наряду с выработкой электроэнергии, ядерные электростанции используются и для опреснения воды. К примеру, такая атомная станция есть в Казахстане.
Какое топливо используют на АЭС
На практике в атомных станциях могут применяться несколько веществ, способных выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.
Ториевое топливо сегодня не применяется в атомных электростанциях, т.к. его сложнее преобразовать в тепловыделяющие элементы, если коротко ТВЭлы.
ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри ТВЭлов находятся радиоактивные вещества. Эти трубки можно назвать хранилищами ядерного топлива. Вторая причина редкого использования тория – это его сложная и дорогая переработка уже после использования на АЭС.
Плутониевое топливо тоже не используется в атомной электроэнергетике, т.к. это вещество имеет очень сложный химический состав, который до сих пор так и не научились правильно использовать.
Урановое топливо
Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. Уран сегодня добывается тремя способами: открытым способом в карьерах, закрытым в шахтах, и способом подземного выщелачивания, с помощью бурения шахт. Последний способ особенно интересен. Для добычи урана выщелачиванием в подземные скважины заливается раствор серной кислоты, он насыщается ураном и выкачивается обратно.
Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде. Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья. Для сравнения, в России из одной тонны руды получают чуть больше полутора килограмм урана.
Места добычи урана нерадиоактивны. В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.
В виде руды уран в АЭС использовать нельзя, никаких реакций он дать не сможет. Сначала урановое сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом. Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при чудовищно высоких температурах больше 1500 градусов по Цельсию. Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.
В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.
Конечно, просто так урановые таблетки в реактор не закидываются. Они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки. Именно ТВС и могут по праву называться топливом АЭС.
Переработка топлива АЭС
Примерно через год использования уран в ядерных реакторах нужно менять. Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение. В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них сделают свежее ядерное топливо.
Продукты распада урана и плутония идут на изготовление источников ионизирующих излучений. Они используются в медицине и промышленности.
Все, что остается после этих манипуляций, отправляется в раскаленную печь и из остатков варится стекло, которое потом остается храниться в специальных хранилищах. Почему именно стекло? Из него будет очень сложно достать остатки радиоактивных элементов, которые могут навредить окружающей среде.
Новости АЭС — не так давно появившийся новый способ утилизации радиоактивных отходов. Созданы так называемые быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива. По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.
Кроме того, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного. Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого никто использовал.
Как строится АЭС?
Что такое атомная электростанция? Что представляет собой это нагромождение серых зданий, которые большинство из нас видело только по телевизору? Насколько прочны и безопасны эти конструкции? Каково строение АЭС? В сердце любой атомной станции находится здание реактора, рядом с ним помещается машинный зал и здание безопасности.
Строительство АЭС ведется согласно нормативным актам, регламентам и требованиям безопасности для объектов, работающих с радиоактивными веществами. Ядерная станция – полноправный стратегический объект государства. Поэтому толщина укладки стен и железобетонных арматурных сооружений в здании реактора в несколько раз больше, чем у стандартных сооружений. Таким образом, помещения атомных станций могут выдержать 8-бальное землетрясение, торнадо, цунами, смерчи и падение самолета.
Здание реактора венчается куполом, который защищен внутренней и внешней бетонными стенками. Внутреннюю бетонную стенку покрывает стальной лист, который в случае аварии должен создать закрытое воздушное пространство и не выпустить радиоактивные вещества в воздух.
Каждая АЭС имеет свой бассейн выдержки. Туда помещаются урановые таблетки, которые уже отслужили свой срок. После того, как урановое топливо вытаскивают из реактора, оно остается чрезвычайно радиоактивным, чтобы реакции внутри ТВЭлов перестали происходить, должно пройти от 3х до 10ти лет (в зависимости от устройства реактора, в котором топливо находилось). В бассейнах выдержки урановые таблетки остывают, и внутри них перестают происходить реакции.
Технологическая схема АЭС, а проще говоря, схема устройства атомных станций бывает нескольких типов, как и характеристика АЭС и тепловая схема АЭС, она зависит от типа ядерного реактора, который используется в процессе получения электроэнергии.
Плавучая АЭС
Что такое АЭС, нам уже известно, но российским ученым пришло в голову, взять атомную станцию и сделать ее передвижной. К сегодняшнему дню проект почти завершен. Назвали эту конструкцию плавучая АЭС. По задумке, плавучая ядерная электростанция сможет обеспечить электричеством город населением до двухсот тысяч человек. Главное ее достоинство – возможность перемещения по морю. Строительство АЭС, способной к передвижению, пока ведется только в России.
Новости АЭС это скорый запуск первой в мире плавучей ядерной электростанции, которая призвана обеспечить энергией портовый город Певек, находящийся в Чукотском автономном округе России. Называется первая плавучая атомная станция «Академик Ломоносов», строится мини-АЭС в Петербурге и планируется к запуску в 2016 – 2019 годах. Презентация атомной электростанции на плаву состоялась в 2015, тогда строители представили почти готовый проект ПАЭС.
Плавучая АЭС призвана обеспечить электроэнергией самые отдаленные города, имеющие выход к морю. Ядерный реактор «Академика Ломоносова» не такой мощный, как у сухопутных атомных станций, но имеет срок эксплуатации 40 лет, это значит, что жители небольшого Певека почти полвека не будут страдать от нехватки электричества.
Плавучая АЭС может быть использована не только как источник тепловой и электроэнергии, но и для опреснения воды. По расчетам, в сутки она может выдать от 40 до 240 кубометров пресной воды.
Стоимость первого блока плавучей АЭС составила 16 с половиной миллиардов рублей, как видим, строительство атомных станций – не дешевое удовольствие.
Безопасность АЭС
После Чернобыльской катастрофы в 1986 году и аварии на Фукусиме в 2011 слова атомная АЭС вызывают у людей страх и панику. На деле современные атомные станции оснащены по последнему слову техники, разработаны специальные правила безопасности, и в целом защита АЭС состоит из 3х уровней:
На первом уровне должна быть обеспечена нормальная эксплуатация АЭС. Безопасность АЭС во многом зависит от правильно подобранного места для размещения атомной станции, качественно созданного проекта, выполнения всех условий при постройке здания. Все должно отвечать регламентам, инструкциям по безопасности и планам.
На втором уровне важно не допустить перехода нормальной работы АЭС в аварийную ситуацию. Для этого существуют специальные приборы, которые контролируют температуру и давление в реакторах, и сообщают о малейших изменениях показаний.
Если первый и второй уровень защиты не сработали, в ход идет третий – непосредственная реакция на аварийную ситуацию. Датчики фиксируют аварию и сами реагируют на нее – реакторы глушатся, источники радиации локализируются, активная зона охлаждается, об аварии сообщается.
Безусловно, ядерная электростанция требует особого внимания к системе безопасности, как на стадии строительства, так и на стадии эксплуатации. Несоблюдения строгого регламента могут повлечь за собой очень серьезные последствия, однако сегодня большая часть ответственности за безопасность АЭС ложится на компьютерные системы, а человеческий фактор почти полностью исключен. Принимая во внимание высокую точность современных машин, в безопасности АЭС можно быть уверенными.
Специалисты уверяют, что в стабильно работающих современных атомных станциях или, находясь рядом с ними, получить большую дозу радиоактивного излучения невозможно. Даже работники АЭС, которые, к слову, ежедневно измеряют уровень полученного излучения, подвергаются облучению не больше, чем обычные жители крупных городов.
Ядерные реакторы
Что такое АЭС? Это в первую очередь работающий ядерный реактор. Внутри него и происходит процесс выработки энергии. В ядерный реактор закладываются ТВС, в нем же урановые нейтроны вступают в реакцию друг с другом, там же они передают тепло воде и так далее.
Внутри конкретного здания реактора находятся следующие сооружения: источник водоснабжения, насос, генератор, паровая турбина, конденсатор, деаэраторы, очиститель, клапан, теплообменник, непосредственно реактор и регулятор давления.
Реакторы бывают нескольких типов, в зависимости от того, какое вещество исполняет функцию замедлителя и теплоносителя в устройстве. Наиболее вероятно, что современная ядерная электростанция будет иметь реакторы на тепловых нейтронах:
- водо-водяные (с обычной водой в качестве и замедлителя нейтронов, и теплоносителя);
- графитоводные (замедлитель – графит, теплоноситель – вода);
- графитогазовые (замедлитель – графит, теплоноситель – газ);
- тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода).
КПД АЭС и мощность АЭС
Общий КПД АЭС (коэффициент полезного действия) с водо-водяным реактором около 33%, с графитоводным – около 40%, тяжеловодным – около 29%. Экономическая состоятельность АЭС зависит от КПД ядерного реактора, энергонапряженности активной зоны реактора, коэффициента использования установленной мощности за год и т.д.
Новости АЭС – обещание ученых в скором времени увеличить КПД атомных станций в полтора раза, до 50%. Это произойдет, если тепловыделяющие сборки, или ТВС, которые непосредственно закладываются в ядерный реактор, будут изготавливать не из сплавов циркония, а из композита. Проблемы АЭС сегодня в том, что цирконий недостаточно жаропрочен, он не выдерживает очень высоких температур и давления, поэтому и КПД АЭС выходит невысоким, композит же может выдержать температуру выше тысячи градусов по Цельсию.
Эксперименты по использованию композита в качестве оболочки для урановых таблеток ведутся в США, Франции и России. Ученые работают над увеличением прочности материала и его внедрением в атомную энергетику.
Что такое атомная электростанция? АЭС это мировая электрическая мощь. Общая электрическая мощность АЭС всего мира – 392 082 МВт. Характеристика АЭС зависит в первую очередь от ее мощности. Самая мощная атомная станция в мире находится во Франции, мощность АЭС Сиво (каждого блока) больше полутора тысяч МВт (мегаватт). Мощность других ядерных электростанций колеблется от 12 МВт в мини-АЭС (Билибинская АЭС, Россия) до 1382 МВт (атомная станция Фламанвиль, Франция). На этапе строительства находятся блок Фламанвиль с мощностью 1650 МВт, атомные станции Южной Кореи Син-Кори с мощностью АЭС в 1400 МВт.
Стоимость АЭС
АЭС, что это? Это и большие деньги. Сегодня людям нужны любые способы добычи электроэнергии. Водяные, тепловые и атомные электростанции повсеместно строятся в более или менее развитых странах. Строительство атомной станции – процесс не из легких, требует больших затрат и капиталовложений, чаще всего денежные ресурсы черпаются из государственных бюджетов.
В стоимость АЭС входят капитальные затраты — расходы на подготовку площади, строительство, введение оборудования в эксплуатацию (суммы капитальных расходов запредельные, к примеру, один парогенератор АЭС стоит больше 9ти миллионов долларов). Кроме того ядерные станции требуют и эксплуатационных расходов, которые включают в себя покупку топлива, расходы на его утилизацию и проч.
По многим причинам официальная стоимость ядерной станции высчитывается лишь приблизительно, сегодня ядерная станция обойдется примерно в 21-25 миллиардов евро. С нуля построить один атомный блок обойдется примерно в 8 миллионов долларов. В среднем срок окупаемости одной станции – 28 лет, срок эксплуатации – 40 лет. Как видно, атомные станции – достаточно дорогое удовольствие, но, как мы выяснили, невероятно нужное и полезное для нас с вами.
Атомные электрические станции (АЭС). Принципиальная схема АЭС. Технологические схемы атомной электростанции (АЭС)
Атомные электрические станции - это тепловые станции, использующие энергию ядерных реакций. В качестве ядерного горючего используют обычно изотоп урана U-235, содержание которого в природном уране составляет 0,714%. Основная масса урана - изотоп U-238 (99,28% всей массы) при захвате нейтронов превращается во вторичное горючее - плутоний Рu-239. Возможно также использование тория, который при захвате нейтронов превращается в делящийся изотоп урана U-233. Реакция деления происходит в ядерном реакторе. Ядерное топливо используют обычно в твердом виде. Его заключают в предохранительную оболочку. Такого рода тепловыделяющие элементы называют твэлами. Их устанавливают в рабочих каналах активной зоны реактора. Тепловая энергия, выделяющаяся при реакции деления, отводится из активной зоны реактора с помощью теплоносителя, который прокачивают под давлением через каждый рабочий канал или через всю активную зону. Наиболее распространенным теплоносителем является вода, которую подвергают тщательной очистке в неорганических фильтрах.
Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. Тепло, выделяющееся в активной зоне реактора 1, отбирается водой (теплоносителем) 1-го контура, которая прокачивается через реактор циркуляционным насосом 2. Нагретая вода из реактора поступает в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе, воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образующийся пар поступает в турбину 4.
Рис. Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение
При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относит увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.
Первая в мире АЭС опытно-промышленного назначения мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась преимущественно в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).
Реакторы атомных электростанций с водяным теплоносителем могут работать в водном или паровом режиме. Во втором случае пар получается непосредственно в активной зоне реактора.
При делении ядер урана или плутония образуются быстрые нейтроны, энергия которых велика. В природном или слабообогащенном уране, где содержание U-235 невелико, цепная реакция на быстрых нейтронах не развивается. Поэтому быстрые нейтроны замедляют до тепловых (медленных) нейтронов. В качестве замедлителей на АЭС используют вещества, которые содержат элементы с малой атомной массой, обладающие низкой поглощающей способностью по отношению к нейтронам. Основными замедлителями являются вода, тяжелая вода, графит.
В настоящее время наиболее освоены реакторы на тепловых нейтронах. Такие реакторы конструктивно проще и легче управляемы по сравнению с реакторами на быстрых нейтронах. Однако перспективным направлением является использование реакторов на быстрых нейтронах с расширенным воспроизводством ядерного горючего - плутония; таким образом может быть использована большая часть U-238.
На последующем этапе развития атомной энергетики намечается освоение термоядерных реакторов, в которых используется энергия реакций синтеза легких ядер дейтерия и трития.
Типы ядерных реакторов
На атомных станциях России используют ядерные реакторы следующих основных типов:
- водо-водяные с обычной водой в качестве замедлителя и теплоносителя;
- графито-водные с водяным теплоносителем и графитовым замедлителем;
- тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя;
- графито-газовые с газовым теплоносителем и графитовым замедлителем.
Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реакторостроении, а также наличием необходимого промышленного оборудования, сырьевых запасов и т. д. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.
В зависимости от вида и агрегатного состояния теплоносителя создаётся тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой температурой собственно ядерного горючего, а также свойствами тенлоносителя, принятого для данного типа реактора.
На АЭС, тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур - пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.
При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, т. е. ТВЭЛы выгорают. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшие ТВЭЛы переносят в бассейн выдержки, а затем направляют на переработку.
К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляционного контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.
В зависимости от конструктивного исполнения реакторы имеют отличительные особенности: в корпусных реакторах ТВЭЛы и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах ТВЭЛы, охлаждаемые теплоносителем, устанавливаются в специальных трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.).
При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.
Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличительная особенность большинства АЭС - использование пара сравнительно низких параметров, насыщенного или слабоперегретого.
При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.
Экономичность АЭС определяется её основными техническими показателями: единичная мощность реактора, кпд, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффициент использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в неё (стоимость установленного квт) снижаются более резко, чем это имеет место для ТЭС . В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30-40% (на ТЭС 60-70%).
Из-за аварии в Чернобыле в 1986 году программа развития атомной энергетики была сокращена. После значительного увеличения производства электроэнергии в 80-е годы темпы роста замедлились, а в 1992-1993 гг. начался спад. При правильной эксплуатации, АЭС – наиболее экологически чистый источник энергии. Их функционирование не приводит к возникновению “парникового” эффекта, выбросам в атмосферу в условиях безаварийной работы, и они не поглощают кислород.
К недостаткам АЭС можно отнести трудности, связанные с захоронением ядерных отходов, катастрофические последствия аварий и тепловое загрязнение используемых водоемов. В нашей стране мощные АЭС расположены: в Центральном и Центрально-Черноземном районах, на Севере, на Северо-Западе, на Урале, в Поволжье и на Северном Кавказе. Новым в атомной энергетике является создание АТЭЦ и АСТ. На АТЭЦ, как и на обычной ТЭЦ, производится тепловая и электрическая энергия, а на АСТ – только тепловая. АТЭЦ действует в поселке Билибино на Чукотке, строятся АСТ.
Единичная мощность ядерных энергоблоков достигла 1500 МВт. В настоящее время считается, что единичная мощность энергоблока АЭС ограничивается не столько техническими соображениями, сколько условиями безопасности при авариях с реакторами.
Действующие в настоящее время АЭС по технологическим требованиям работают главным образом в базовой части графика нагрузки энергосистемы с продолжительностью использования установленной мощности 6500-7000 ч/год.
Технологическая схема АЭС зависит от типа реактора, вида теплоносителя и замедлителя, а также от ряда других факторов. Схема может быть одноконтурной (рис. а), двухконтурной (рис. б) и трехконтурной (рис. в).
Одноконтурная технологическая схема АЭС
Одноконтурная схема с кипящим реактором и графитовым замедлителем типа РБМК-1000 применена на Ленинградской АЭС. Реактор работает в блоке с двумя конденсационными турбинами типа К-500-65/3000 и двумя генераторами мощностью 500 МВт. Кипящий реактор является парогенератором и тем самым предопределяет возможность применения одноконтурной схемы. Начальные параметры насыщенного пара перед турбиной: температура 284°С, давление пара 7,0 МПа. Одноконтурная схема относительно проста, но радиоактивность распространяется на все элементы блока, что усложняет биологическую защиту.
Двухконтурная технологическая схема АЭС
Двухконтурную схему применяют в водо-водяном реакторе типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается до температуры 568-598°С при давлении 12,25-15,7 МПа. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.
Трехконтурная технологическая схема АЭС
Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН-600. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной. Реактор БН-600 работает в блоке с тремя конденсационными турбинами К-200-130 с начальным давлением пара 13 МПа и температурой 500°С.
При работе АЭС, не потребляющих органическое топливо (уголь, нефть, газ), в атмосферу не выбрасываются окислы серы, азота, углекислый газ; это позволяет снизить «парниковый эффект», ведущий к глобальному изменению климата.
Во многих странах атомные станции уже вырабатывают более половины электроэнергии (во Франции - около 75%, в Бельгии - около 65%, в России - только 12%).
Уроки аварии на Чернобыльской АЭС (апрель 1986 г.) потребовали существенно (во много раз) повысить безопасность АЭС и заставили отказаться от строительства АЭС в густонаселенных и сейсмоактивных районах. Тем не менее с учетом экологической ситуации атомную энергетику следует рассматривать как перспективную.
Популярное
- Как сделать фото на кружке в домашних условиях Что нужно для изготовления фотопечати на чашках
- Подключение и настройка роутера ASUS RT N12VP
- Настройка роутера TP-LINK TD-W8151N для работы с Ростелекомом Можно ли подключить tp link к ростелекому
- Рынок совершенной конкуренции При совершенной конкуренции в долгосрочном периоде обеспечивается
- Крольчатник своими руками: схемы, размеры, чертежи и пошаговая инструкция постройки загона для кролей (115 фото)
- Как подключить интернет соединение на компьютере через кабель?
- Что делать если лагает интернет на компьютере
- Истории успешных женщин россии Известные бизнесвумен мира
- Поворотный стенд а-ля Gamma своими руками Стенд из реек своими руками
- Первая помощь при терминальных состояниях презентация